3.95 \(\int (a+a \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x)) \sec (c+d x) \, dx\)

Optimal. Leaf size=170 \[ \frac {2 a^{5/2} A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a^3 (49 A+32 C) \sin (c+d x)}{21 d \sqrt {a \cos (c+d x)+a}}+\frac {2 a^2 (7 A+8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{21 d}+\frac {2 a C \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{7 d} \]

[Out]

2*a^(5/2)*A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+2/7*a*C*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2
/7*C*(a+a*cos(d*x+c))^(5/2)*sin(d*x+c)/d+2/21*a^3*(49*A+32*C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/21*a^2*(7*
A+8*C)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.57, antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {3046, 2976, 2981, 2773, 206} \[ \frac {2 a^3 (49 A+32 C) \sin (c+d x)}{21 d \sqrt {a \cos (c+d x)+a}}+\frac {2 a^2 (7 A+8 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{21 d}+\frac {2 a^{5/2} A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a C \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{7 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(2*a^(5/2)*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a^3*(49*A + 32*C)*Sin[c + d*x])/
(21*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a^2*(7*A + 8*C)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(21*d) + (2*a*C*(a
 + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(7*d) + (2*C*(a + a*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2976

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])
^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*S
in[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&
NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
+ 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp
[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b
, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-
1)] && NeQ[m + n + 2, 0]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx &=\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {2 \int (a+a \cos (c+d x))^{5/2} \left (\frac {7 a A}{2}+\frac {5}{2} a C \cos (c+d x)\right ) \sec (c+d x) \, dx}{7 a}\\ &=\frac {2 a C (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d}+\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {4 \int (a+a \cos (c+d x))^{3/2} \left (\frac {35 a^2 A}{4}+\frac {5}{4} a^2 (7 A+8 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{35 a}\\ &=\frac {2 a^2 (7 A+8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a C (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d}+\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\frac {8 \int \sqrt {a+a \cos (c+d x)} \left (\frac {105 a^3 A}{8}+\frac {5}{8} a^3 (49 A+32 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{105 a}\\ &=\frac {2 a^3 (49 A+32 C) \sin (c+d x)}{21 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (7 A+8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a C (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d}+\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}+\left (a^2 A\right ) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac {2 a^3 (49 A+32 C) \sin (c+d x)}{21 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (7 A+8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a C (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d}+\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}-\frac {\left (2 a^3 A\right ) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=\frac {2 a^{5/2} A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a^3 (49 A+32 C) \sin (c+d x)}{21 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (7 A+8 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a C (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{7 d}+\frac {2 C (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{7 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.53, size = 115, normalized size = 0.68 \[ \frac {a^2 \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\cos (c+d x)+1)} \left (2 \sin \left (\frac {1}{2} (c+d x)\right ) ((28 A+101 C) \cos (c+d x)+224 A+24 C \cos (2 (c+d x))+3 C \cos (3 (c+d x))+208 C)+84 \sqrt {2} A \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{84 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(84*Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] + 2*(224*A +
208*C + (28*A + 101*C)*Cos[c + d*x] + 24*C*Cos[2*(c + d*x)] + 3*C*Cos[3*(c + d*x)])*Sin[(c + d*x)/2]))/(84*d)

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 192, normalized size = 1.13 \[ \frac {21 \, {\left (A a^{2} \cos \left (d x + c\right ) + A a^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (3 \, C a^{2} \cos \left (d x + c\right )^{3} + 12 \, C a^{2} \cos \left (d x + c\right )^{2} + {\left (7 \, A + 23 \, C\right )} a^{2} \cos \left (d x + c\right ) + 2 \, {\left (28 \, A + 23 \, C\right )} a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{42 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="fricas")

[Out]

1/42*(21*(A*a^2*cos(d*x + c) + A*a^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x +
c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(3*C*a^2*cos(d*x
 + c)^3 + 12*C*a^2*cos(d*x + c)^2 + (7*A + 23*C)*a^2*cos(d*x + c) + 2*(28*A + 23*C)*a^2)*sqrt(a*cos(d*x + c) +
 a)*sin(d*x + c))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 2.12, size = 346, normalized size = 2.04 \[ \frac {a^{\frac {3}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-48 C \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+168 C \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-28 \sqrt {2}\, \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (A +8 C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+126 A \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+21 A \ln \left (\frac {4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +21 A \ln \left (-\frac {4 \left (\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 a \right )}{-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +168 C \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{21 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c),x)

[Out]

1/21*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-48*C*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)
^(1/2)*sin(1/2*d*x+1/2*c)^6+168*C*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-28*2^(1/
2)*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(A+8*C)*sin(1/2*d*x+1/2*c)^2+126*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^
(1/2)*a^(1/2)+21*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/
2)*cos(1/2*d*x+1/2*c)+2*a))*a+21*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/
2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+168*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/sin(1/2*
d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 78, normalized size = 0.46 \[ \frac {{\left (3 \, \sqrt {2} a^{2} \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 21 \, \sqrt {2} a^{2} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 77 \, \sqrt {2} a^{2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 315 \, \sqrt {2} a^{2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} C \sqrt {a}}{84 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="maxima")

[Out]

1/84*(3*sqrt(2)*a^2*sin(7/2*d*x + 7/2*c) + 21*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) + 77*sqrt(2)*a^2*sin(3/2*d*x +
3/2*c) + 315*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c))*C*sqrt(a)/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)*sec(d*x+c),x)

[Out]

Timed out

________________________________________________________________________________________